Semantics of forethought logical connectives
The forethought connectives of Zantufa that is a series of parsers for unofficial Lojban are much more expressive than those of official grammar.
Zantufa is syntactic parser, and it does not fix rules for sematics by itself, though.
Here is only a suggestion of semantics of the forethought logical connectives in order to gain profit from expressiveness of Zantufa grammar.
The sentences in Lojban here follow the grammar of Zantufa_1.16.
List of symbols used on this page
Symbol
|
Definition
|
¬P
|
na ku P
|
P ∨ Q
|
P i ja Q
|
|
((((P0 ∨ P1) ∨ P2) ∨ ...) ∨ Pn)
|
P ∧ Q
|
P i je Q
|
|
((((P0 ∧ P1) ∧ P2) ∧ ...) ∧ Pn)
|
P ↔ Q
|
P i jo Q
|
|
((((P0 ↔ P1) ↔ P2) ↔ ...) ↔ Pn)
|
P ⊕ Q
|
P i jonai Q
|
|
((((P0 ⊕ P1) ⊕ P2) ⊕ ...) ⊕ Pn)
|
P ⊏ Q
|
P i ju Q
|
|
((((P0 ⊏ P1) ⊏ P2) ⊏ ...) ⊏ Pn) = P0
|
P ⊐ Q
|
P i se ju Q
|
|
((((P0 ⊐ P1) ⊐ P2) ⊐ ...) ⊐ Pn) = Pn
|
In the following explanation, examples for 3-ary or 4-ary connection are sometimes accompanied with a truth value table.
The falseness is represented by 0; the truth is represented by 1.
Examples for 3-ary connection are sometimes accompanied with a Venn diagram.
White color represents falseness; orange color represents truth.
ga
ga A gi B gi C gi ...
Definition
ga P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
Example
3-ary case:
{ga A gi B gi C}=(A∨B)∨C
A
|
B
|
C
|
A∨B
|
(A∨B)∨C
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
ga bo A gi B gi C gi ...
Definition
|
ga bo P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
ga P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
|
ga nai A gi B gi C gi ...
Definition
|
ga nai P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
ga ¬P0 gi P1 gi ... gi Pn (gi'i)
|
Example
3-ary case:
{ga nai A gi B gi C}=(¬A∨B)∨C
A
|
B
|
C
|
¬A∨B
|
(¬A∨B)∨C
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
ga nai bo A gi B gi C gi ...
Definition
ga nai bo P0 gi P1 gi ... gi Pn (gi'i)
|
|
Example
3-ary case:
|
{ga nai bo A gi B gi C}
|
=
|
((A→B)∧(B→C))
|
=
|
((¬A∨B)∧(¬B∨C))
|
ga zei nai zei bo zei ven
A
|
B
|
C
|
¬A∨B
|
¬B∨C
|
(¬A∨B)∧(¬B∨C)
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
Difference
{ga nai bo A gi B gi C} ≠ {A i na ja B i na ja C}
|
A i na ja B i na ja C
|
=
|
(A → B) → C
|
=
|
¬(¬A ∨ B) ∨ C
|
A
|
B
|
C
|
¬A∨B
|
¬(¬A∨B)∨C
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
ge
ge A gi B gi C gi ...
Definition
|
ge P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
|
Example
3-ary case:
{ge A gi B gi C}=(A∧B)∧C
A
|
B
|
C
|
A∧B
|
(A∧B)∧C
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
ge bo A gi B gi C gi ...
Definition
|
ge bo P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
ge P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
|
ge nai A gi B gi C gi ...
Definition
|
ge nai P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
ge ¬P0 gi P1 gi ... gi Pn (gi'i)
|
Example
3-ary case:
{ge nai A gi B gi C}=(¬A∧B)∧C
A
|
B
|
C
|
¬A∧B
|
(¬A∧B)∧C
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
ge nai bo A gi B gi C gi ...
Definition
ge nai bo P0 gi P1 gi ... gi Pn (gi'i)
|
|
Example
3-ary case:
|
{ge nai bo A gi B gi C}
|
=
|
{ge nai A gi nai B gi nai C}
|
=
|
{A i na je nai B i je nai C}
|
=
|
(¬A∧¬B)∧¬C
|
ge zei nai zei bo zei ven
A
|
B
|
C
|
¬A∧¬B
|
(¬A∧¬B)∧¬C
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
go
go A gi B gi C gi ...
Definition
|
go P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
|
Example
3-ary case:
{go A gi B gi C}=(A↔B)↔C
A
|
B
|
C
|
A↔B
|
(A↔B)↔C
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
go bo A gi B gi C gi ...
Definition
go bo P0 gi P1 gi ... gi Pn (gi'i)
|
|
Example
3-ary case:
|
{go bo A gi B gi C}
|
=
|
((A↔B)∧(B↔C))
|
A
|
B
|
C
|
A↔B
|
B↔C
|
(A↔B)∧(B↔C)
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
go nai A gi B gi C gi ...
Definition
|
go nai P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
go ¬P0 gi P1 gi ... gi Pn (gi'i)
|
Example
3-ary case:
{go nai A gi B gi C}=(¬A↔B)↔C
A
|
B
|
C
|
¬A↔B
|
(¬A↔B)↔C
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
go nai bo A gi B gi C gi ...
Definition
It is defined recursively as follows.
2-ary case of P0 and P1:
|
go nai bo P0 gi P1 (gi'i)
|
=
|
go nai P0 gi P1 (gi'i)
|
=
|
P0 ⊕ P1
|
=
|
¬P0 ↔ P1
|
3-ary case of P0, ... , Pn (n≥2):
|
go nai bo P0 gi ... gi Pn (gi'i)
|
=
|
((go nai bo P0 gi ... gi Pn-1 (gi'i)) ⊕ Pn) ∧
|
Example
3-ary case:
|
{go nai bo A gi B gi C}
|
=
|
((go nai A gi B) ⊕ C) ∧ ¬(A∧B)
|
=
|
((A⊕B)⊕C) ∧ ¬(A∧B)
|
go zei nai zei bo zei ven
A
|
B
|
C
|
A⊕B
|
(A⊕B)⊕C
|
¬(A∧B)
|
((A⊕B)⊕C) ∧ ¬(A∧B)
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
4-ary case:
|
{go nai bo A gi B gi C gi D}
|
=
|
((go nai bo A gi B gi C) ⊕ D) ∧ ¬(A∧B) ∧ ¬(B∧C) ∧ ¬(C∧A)
|
A
|
B
|
C
|
D
|
go nai bo A gi B gi C
|
(go nai bo A gi B gi C) ⊕ D
|
¬(A∧B)
|
¬(B∧C)
|
¬(C∧A)
|
((go nai bo A gi B gi C) ⊕ D) ∧ ¬(A∧B) ∧ ¬(B∧C) ∧ ¬(C∧A)
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
Difference
{go nai bo P0 gi P1 gi ... gi Pn (gi'i)} ≠ {P0 i jo nai P1 i jo nai ... i jo nai Pn}
Here is, for example, the table of truth value of connection by {i jo nai}. It is different from that of {go nai bo A gi B gi C gi D}.
|
{A i jo nai B i jo nai C i jo nai D}
|
=
|
{A i na jo B i na jo C i na jo D}
|
=
|
((A ⊕ B) ⊕ C) ⊕ D
|
A
|
B
|
C
|
D
|
A ⊕ B
|
(A ⊕ B) ⊕ C
|
((A ⊕ B) ⊕ C) ⊕ D
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
gu
gu A gi B gi C gi ...
Definition
|
gu P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
|
=
|
P0
|
Example
3-ary case:
|
{gu A gi B gi C}
|
=
|
(A ⊏ B) ⊏ C
|
=
|
A
|
gu bo A gi B gi C gi ...
Definition
|
gu bo P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
gu P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
|
=
|
P0
|
gu nai A gi B gi C gi ...
Definition
|
gu nai P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
gu ¬P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
¬P0
|
Example
3-ary case:
|
{gu nai A gi B gi C}
|
=
|
{gu ¬A gi B gi C}
|
=
|
¬A
|
gu nai bo A gi B gi C gi ...
Definition
|
gu nai bo P0 gi P1 gi ... gi Pn (gi'i)
|
|
gu ¬P0 gi ¬P1 gi ... gi ¬Pn (gi'i)
|
=
|
¬P0
|
=
|
gu nai P0 gi P1 gi ... gi Pn (gi'i)
|
segu
se xi ky gu A gi B gi C gi ... (se gu, te gu, ve gu, xe gu, ..., se xi ro gu)
|
se xi ky gu P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
P0 i se ju P1 i se ju ... i se ju Pk i ju ... i ju Pn
|
=
|
i ju ... i ju Pn
|
=
|
Pk i ju ... i ju Pn
|
=
|
|
=
|
Pk
|
{se xi no gu}
|
=
|
{gu}
|
{se xi pa gu}
|
=
|
{se gu}
|
{se xi re gu}
|
=
|
{te gu}
|
{se xi ci gu}
|
=
|
{ve gu}
|
{se xi vo gu}
|
=
|
{xe gu}
|
|
...
|
|
{se xi ro gu P0 gi P1 gi ... gi Pn (gi'i)}
|
=
|
Pn
|
se xi ky gu bo A gi B gi C gi ...
|
se xi ky gu bo P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
se xi ky gu P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
Pk
|
se xi ky gu nai A gi B gi C gi ...
In the case of k=0
|
se xi no gu nai P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
gu ¬P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
¬P0
|
In the case of k≠0
|
se xi ky gu nai P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
se xi ky gu ¬P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
Pk
|
se xi ky gu nai bo A gi B gi C gi ...
|
se xi ky gu nai bo P0 gi P1 gi ... gi Pn (gi'i)
|
=
|
se xi ky gu ¬P0 gi ¬P1 gi ... gi ¬Pk gi ... gi ¬Pn (gi'i)
|
=
|
¬Pk
|